Pertidaksamaan Nilai Mutlak
- Dapatkan link
- X
- Aplikasi Lainnya
Nama : Wellyan Fionaris
kampus : Mahasiswa IT-PLN JAKARTA
Pengertian
Pertidaksamaan adalah kalimat matematika terbuka yang memuat ungkapan >, ≥, <, atau ≤. Sedangkan ketidaksamaan atau pertidaksamaan mutlak (absolut) adalah pertidaksamaan yang selalu benar untuk setiap nilai pengganti variabelnya. Suatu pertidaksamaan yang selalu salah untuk setiap pengganti variabelnya disebut pertidaksamaan palsu.
Sifat-Sifat Pertidaksamaan
Tanda pertidaksamaan tidak berubah jika kedua ruas ditambah atau dikurangi dengan bilangan yang sama.
Jika a < b maka:
a + c < b + c
a – c < b – c
a – c < b – c
Tanda pertidaksamaan tidak berubah jika kedua ruas dikali atau dibagi dengan bilangan positif yang sama
Jika a < b, dan c adalah bilangan positif, maka:
- a.c < b.c
- a/b < b/c
Tanda pertidaksamaan akan berubah jika kedua ruas pertidaksamaan dikali atau dibagi dengan bilangan negatif yang sama
Jika a < b, dan c adalah bilangan negatif, maka:
- a.c > b.c
- a/c > b/c
Tanda pertidaksamaan tidak berubah jika kedua ruas positif masing-masing dikuadratkan
Jika a < b; a dan b sama-sama positif, maka: a2 < b2
Pertidaksamaan Nilai Mutlak
→ variabelnya berada di dalam tanda mutlak | ….. |
(tanda mutlak selalu menghasilkan hasil yang positif, contoh: |3| = 3; |–3| = 3)
(tanda mutlak selalu menghasilkan hasil yang positif, contoh: |3| = 3; |–3| = 3)
Pengertian nilai mutlak:
Penyelesaian:
Jika |x| < a berarti: –a < x < a, dimana a ≥ 0
Jika |x| > a berarti: x < –a atau x > a, dimana a ≥ 0
Jika |x| > a berarti: x < –a atau x > a, dimana a ≥ 0
Contoh 1:
|2x – 3| ≤ 5
berarti:
–5 ≤ 2x – 3 ≤ 5
–5 + 3 ≤ 2x ≤ 5 + 3
–2 ≤ 2x ≤ 8
–5 + 3 ≤ 2x ≤ 5 + 3
–2 ≤ 2x ≤ 8
Semua dibagi 2:
–1 ≤ x ≤ 4
–1 ≤ x ≤ 4
Contoh 2:
|3x + 7| > 2
berarti:
3x + 7 < –2 atau 3x + 7 > 2
3x < –2 – 7 atau 3x > 2 – 7
x < –3 atau x > –5/3
3x < –2 – 7 atau 3x > 2 – 7
x < –3 atau x > –5/3
- Dapatkan link
- X
- Aplikasi Lainnya
Komentar
Posting Komentar