Pertidaksamaan Nilai Mutlak

Nama : Wellyan Fionaris
kampus : Mahasiswa IT-PLN JAKARTA

Pengertian
Pertidaksamaan adalah kalimat matematika terbuka yang memuat ungkapan >, ≥, <, atau ≤. Sedangkan ketidaksamaan atau pertidaksamaan mutlak (absolut) adalah pertidaksamaan yang selalu benar untuk setiap nilai pengganti variabelnya. Suatu pertidaksamaan yang selalu salah untuk setiap pengganti variabelnya disebut pertidaksamaan palsu.
Pertidaksamaan Nilai Mutlak

Sifat-Sifat Pertidaksamaan
Tanda pertidaksamaan tidak berubah jika kedua ruas ditambah atau dikurangi dengan bilangan yang sama.
Jika a < b maka:
a + c < b + c
a – c < b – c

Tanda pertidaksamaan tidak berubah jika kedua ruas dikali atau dibagi dengan bilangan positif yang sama
Jika a < b, dan c adalah bilangan positif, maka:
  • a.c < b.c
  • a/b < b/c

Tanda pertidaksamaan akan berubah jika kedua ruas pertidaksamaan dikali atau dibagi dengan bilangan negatif yang sama
Jika a < b, dan c adalah bilangan negatif, maka:
  • a.c > b.c
  • a/c > b/c
Tanda pertidaksamaan tidak berubah jika kedua ruas positif masing-masing dikuadratkan
Jika a < b; a dan b sama-sama positif, maka: a2 < b2

Pertidaksamaan Nilai Mutlak

→ variabelnya berada di dalam tanda mutlak | ….. |
(tanda mutlak selalu menghasilkan hasil yang positif, contoh: |3| = 3; |–3| = 3)
Pengertian nilai mutlak:
Penyelesaian:
Jika |x| < a berarti: –a < x < a, dimana a ≥ 0
Jika |x| > a berarti: x < –a atau x > a, dimana a ≥ 0

Contoh 1:
|2x – 3| ≤ 5
berarti:
–5 ≤ 2x – 3 ≤ 5
–5 + 3 ≤ 2x ≤ 5 + 3
–2 ≤ 2x ≤ 8
Semua dibagi 2:
–1 ≤ x ≤ 4

Contoh 2:
|3x + 7| > 2
berarti:
3x + 7 < –2 atau 3x + 7 > 2
3x < –2 – 7 atau 3x > 2 – 7
x < –3 atau x > –5/3

Komentar

Postingan populer dari blog ini

Matriks Lanjutan 1 - Operasi Matriks dan Sifat-sifatnya

FUNGSI DAN GRAFIK FUNGSI

Aljabar Linear- Basis dan Dimensi